Fr. 47.90

Algorithmic Differentiation in Finance Explained

Englisch · Taschenbuch

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

This book provides the first practical guide to the function and implementation of algorithmic differentiation in finance. Written in a highly accessible way, Algorithmic Differentiation Explained will take readers through all the major applications of AD in the derivatives setting with a focus on implementation.
Algorithmic Differentiation (AD) has been popular in engineering and computer science, in areas such as fluid dynamics and data assimilation for many years. Over the last decade, it has been increasingly (and successfully) applied to financial risk management, where it provides an efficient way to obtain financial instrument price derivatives with respect to the data inputs. Calculating derivatives exposure across a portfolio is no simple task. It requires many complex calculations and a large amount of computer power, which in prohibitively expensive and can be time consuming. Algorithmic differentiation techniques can be very successfully in computing Greeks and sensitivities of a portfolio with machine precision.


Written by a leading practitioner who works and programmes AD, it offers a practical analysis of all the major applications of AD in the derivatives setting and guides the reader towards implementation. Open source code of the examples is provided with the book, with which readers can experiment and perform their own test scenarios without writing the related code themselves.

Inhaltsverzeichnis

Chapter1 Introduction.- Chapter2 The Principles of Algorithmic Differentiation.- Chapter3 Applications to Finance.- Chapter4 Automated Algorithmic differentiation.- Chapter5 Derivatives to Non-inputs and Non-derivatives to Inputs.- Chapter 6 Calibration.

Zusammenfassung

This book provides the first practical guide to the function and implementation of algorithmic differentiation in finance. Written in a highly accessible way, Algorithmic Differentiation Explained will take readers through all the major applications of AD in the derivatives setting with a focus on implementation.
Algorithmic Differentiation (AD) has been popular in engineering and computer science, in areas such as fluid dynamics and data assimilation for many years.  Over the last decade, it has been increasingly (and successfully) applied to financial risk management, where it provides an efficient way to obtain financial instrument price derivatives with respect to the data inputs. Calculating derivatives exposure across a portfolio is no simple task.  It requires many complex calculations and a large amount of computer power, which in prohibitively expensive and can be time consuming.  Algorithmic differentiation techniques can be very successfully in computing Greeks and sensitivities of a portfolio with machine precision.

Written by a leading practitioner who works and programmes AD, it offers a practical analysis of all the major applications of AD in the derivatives setting and guides the reader towards implementation.  Open source code of the examples is provided with the book, with which readers can experiment and perform their own test scenarios without writing the related code themselves.

Produktdetails

Autoren Marc Henrard
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Taschenbuch
Erschienen 11.09.2017
 
EAN 9783319539782
ISBN 978-3-31-953978-2
Seiten 103
Abmessung 160 mm x 5 mm x 240 mm
Gewicht 210 g
Illustration XIII, 103 p. 7 illus.
Serie Financial Engineering Explained
Themen Sozialwissenschaften, Recht,Wirtschaft > Wirtschaft > Betriebswirtschaft

B, Finance, Library, Angewandte Mathematik, Economics and Finance, Applications of Mathematics, Finance & accounting, Economics, Mathematical, Financial Engineering, Quantitative Finance, Mathematics in Business, Economics and Finance, Sensitivity, Greeks, Bucketed Delta, Sticky smile

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.