Fr. 199.00

Designing the Conceptual Landscape for a XAIR Validation Infrastructure - Proceedings of the International Workshop on Designing the Conceptual Landscape for a XAIR Validation Infrastructure, DCLXVI 2024, Kaiserslautern, Germany

Englisch · Taschenbuch

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

This book focuses on explainable-AI-ready (XAIR) data and models, offering a comprehensive perspective on the foundations needed for transparency, interpretability, and trust in AI systems. It introduces novel strategies for metadata structuring, conceptual analysis, and validation frameworks, addressing critical challenges in regulation, ethics, and responsible machine learning.
Furthermore, it highlights the importance of standardized documentation and conceptual clarity in AI validation, ensuring that systems remain transparent and accountable.
Aimed at researchers, industry professionals, and policymakers, this resource provides insights into AI governance and reliability. By integrating perspectives from applied ontology, epistemology, and AI assessment, it establishes a structured framework for developing robust, trustworthy, and explainable AI technologies.

Inhaltsverzeichnis

Synopsis of core concepts for explainable AI-ready data and models.- Conceptualizing validation systems for explainable AI A design approach.- Balancing performance and transparency.- Explainable AI for battery health monitoring.- A minimalistic definition of XAI explanations.-  A comparative analysis of deep learning architectures and explainable AI.- Conclusion.

Zusammenfassung

This book focuses on explainable-AI-ready (XAIR) data and models, offering a comprehensive perspective on the foundations needed for transparency, interpretability, and trust in AI systems. It introduces novel strategies for metadata structuring, conceptual analysis, and validation frameworks, addressing critical challenges in regulation, ethics, and responsible machine learning.
Furthermore, it highlights the importance of standardized documentation and conceptual clarity in AI validation, ensuring that systems remain transparent and accountable.
Aimed at researchers, industry professionals, and policymakers, this resource provides insights into AI governance and reliability. By integrating perspectives from applied ontology, epistemology, and AI assessment, it establishes a structured framework for developing robust, trustworthy, and explainable AI technologies.

Produktdetails

Mitarbeit Fadi Al Machot (Herausgeber), Martin T. Horsch (Herausgeber), Sebastian Scholze (Herausgeber), Martin T Horsch (Herausgeber)
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Taschenbuch
Erschienen 14.05.2025
 
EAN 9783031892738
ISBN 978-3-0-3189273-8
Seiten 193
Abmessung 155 mm x 11 mm x 235 mm
Gewicht 312 g
Illustration VI, 193 p. 23 illus., 16 illus. in color.
Serie Lecture Notes in Networks and Systems
Themen Naturwissenschaften, Medizin, Informatik, Technik > Technik > Allgemeines, Lexika

Artificial Intelligence, Computational Intelligence, Research Data Management, Explainable Artificial Intelligence, Modelling and Simulation, Applied ontology, Semantic technology

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.