Fr. 286.00

Inverse Boundary Spectral Problems

Englisch · Fester Einband

Versand in der Regel in 3 bis 5 Wochen

Beschreibung

Mehr lesen










Inverse boundary problems are a rapidly developing area of applied mathematics with applications throughout physics and the engineering sciences. However, the mathematical theory of inverse problems remains incomplete and needs further development to aid in the solution of many important practical problems.

Inverse Boundary Spectral Problems develop a rigorous theory for solving several types of inverse problems exactly. In it, the authors consider the following:

"Can the unknown coefficients of an elliptic partial differential equation be determined from the eigenvalues and the boundary values of the eigenfunctions?"

Along with this problem, many inverse problems for heat and wave equations are solved.

The authors approach inverse problems in a coordinate invariant way, that is, by applying ideas drawn from differential geometry. To solve them, they apply methods of Riemannian geometry, modern control theory, and the theory of localized wave packets, also known as Gaussian beams. The treatment includes the relevant background of each of these areas.

Although the theory of inverse boundary spectral problems has been in development for at least 10 years, until now the literature has been scattered throughout various journals. This self-contained monograph summarizes the relevant concepts and the techniques useful for dealing with them.

Inhaltsverzeichnis

One-Dimensional Problem. Basic Geometrical and Analytical Methods for Inverse Problems. Gel'fand Inverse Boundary Spectral Problem for Manifolds. Inverse Problems for Wave and other Types of Equations. Bibliography. Table of Notation.

Über den Autor / die Autorin

Kachalov, Alexander; Kurylev, Yaroslav; Lassas, Matti

Zusammenfassung

Inverse boundary problems are an area of applied mathematics with applications throughout physics and the engineering sciences. This book considers the following: Can the unknown coefficients of an elliptic partial differential equation be determined from the eigen values and the boundary values of the eigen functions?

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.