Fr. 76.00

Mobile Data Mining

Englisch · Taschenbuch

Versand in der Regel in 4 bis 7 Arbeitstagen

Beschreibung

Mehr lesen


This SpringerBrief presents a typical life-cycle of mobile data mining applications, including:

  • data capturing and processing which determines what data to collect, how to collect these data, and how to reduce the noise in the data based on smartphone sensors
  •  feature engineering which extracts and selects features to serve as the input of algorithms based on the collected and processed data
  •  model and algorithm design
In particular, this brief concentrates on the model and algorithm design aspect, and explains three challenging requirements of mobile data mining applications: energy-saving, personalization, and real-time

 Energy saving is a fundamental requirement of mobile applications, due to the limited battery capacity of smartphones. The authors  explore the existing practices in the methodology level (e.g. by designing hierarchical models) for saving energy. Another fundamental requirement of mobile applications is personalization.  Most of the existing methods tend to train generic models for all users, but the authors provide existing personalized treatments for mobile applications, as the behaviors may differ greatly from one user to another in many mobile applications. The third requirement is real-time. That is, the mobile application should return responses in a real-time manner, meanwhile balancing effectiveness and efficiency.
 This SpringerBrief targets data mining and machine learning researchers and practitioners working in these related fields. Advanced level students studying computer science and electrical engineering will also find this brief useful as a study guide. 

Inhaltsverzeichnis

1 Introduction.- 2 Data Capturing and Processing.- 3 Feature Engineering.- 4 Hierarchical Model.- 5 Personalized Model.- 6 Online Model.- 7 Conclusions.

Zusammenfassung


This SpringerBrief presents a typical life-cycle of mobile data mining applications, including:

  • data capturing and processing which determines what data to collect, how to collect these data, and how to reduce the noise in the data based on smartphone sensors
  •  feature engineering which extracts and selects features to serve as the input of algorithms based on the collected and processed data
  •  model and algorithm design
In particular, this brief concentrates on the model and algorithm design aspect, and explains three challenging requirements of mobile data mining applications: energy-saving, personalization, and real-time

 Energy saving is a fundamental requirement of mobile applications, due to the limited battery capacity of smartphones. The authors  explore the existing practices in the methodology level (e.g. by designing hierarchical models) for saving energy. Another fundamental requirement of mobile applications is personalization.  Most of the existing methods tend to train generic models for all users, but the authors provide existing personalized treatments for mobile applications, as the behaviors may differ greatly from one user to another in many mobile applications. The third requirement is real-time. That is, the mobile application should return responses in a real-time manner, meanwhile balancing effectiveness and efficiency.
 This SpringerBrief targets data mining and machine learning researchers and practitioners working in these related fields. Advanced level students studying computer science and electrical engineering will also find this brief useful as a study guide. 

Produktdetails

Autoren Xin Su, Xing Su, Hanghang Tong, Yua Yao, Yuan Yao
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Taschenbuch
Erschienen 01.01.2018
 
EAN 9783030021009
ISBN 978-3-0-3002100-9
Seiten 58
Abmessung 155 mm x 5 mm x 234 mm
Gewicht 136 g
Illustration IX, 58 p. 22 illus. in color.
Serien SpringerBriefs in Computer Science
SpringerBriefs in Computer Science
Thema Naturwissenschaften, Medizin, Informatik, Technik > Informatik, EDV > Informatik

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.