Fr. 70.00

Transactions on Large-Scale Data- and Knowledge-Centered Systems XIX - Special Issue on Big Data and Open Data

Englisch · Taschenbuch

Versand in der Regel in 6 bis 7 Wochen

Beschreibung

Mehr lesen

The LNCS journal Transactions on Large-Scale Data- and Knowledge-Centered Systems focuses on data management, knowledge discovery, and knowledge processing, which are core and hot topics in computer science. Since the 1990s, the Internet has become the main driving force behind application development in all domains. An increase in the demand for resource sharing across different sites connected through networks has led to an evolution of data- and knowledge-management systems from centralized systems to decentralized systems enabling large-scale distributed applications providing high scalability. Current decentralized systems still focus on data and knowledge as their main resource. Feasibility of these systems relies basically on P2P (peer-to-peer) techniques and the support of agent systems with scaling and decentralized control. Synergy between grids, P2P systems, and agent technologies is the key to data- and knowledge-centered systems in large-scale environments.

This, the 19th issue of Transactions on Large-Scale Data- and Knowledge-Centered Systems, contains four high-quality papers investigating the areas of linked data and big data from a data management perspective. Two of the four papers focus on the application of clustering techniques in performing inference and search over (linked) data sources. One paper leverages graph analysis techniques to enable application-level integration of institutional data and a final paper describes an approach for protecting users' profile data from disclosure, tampering, and improper use.

Inhaltsverzeichnis

Structure Inference for Linked Data Sources Using Clustering.- The Web Within: Leveraging Web Standards and Graph Analysis to Enable Application-Level Integration of Institutional Data.- Dimensional Clustering of Linked Data: Techniques and Applications.- ProProtect3: An Approach for Protecting User Profile Data from Disclosure, Tampering, and Improper Use in the Context of WebID.

Über den Autor / die Autorin

Roland Wagner, Kunsthistoriker und Germanist, ist Stipendiat der Fazit-Stiftung und Spezialist für den Einfluss der Philosophie Friedrich Nietzsches auf die Kunst.

Zusammenfassung

The LNCS journal Transactions on Large-Scale Data- and Knowledge-Centered Systems focuses on data management, knowledge discovery, and knowledge processing, which are core and hot topics in computer science. Since the 1990s, the Internet has become the main driving force behind application development in all domains. An increase in the demand for resource sharing across different sites connected through networks has led to an evolution of data- and knowledge-management systems from centralized systems to decentralized systems enabling large-scale distributed applications providing high scalability. Current decentralized systems still focus on data and knowledge as their main resource. Feasibility of these systems relies basically on P2P (peer-to-peer) techniques and the support of agent systems with scaling and decentralized control. Synergy between grids, P2P systems, and agent technologies is the key to data- and knowledge-centered systems in large-scale environments.

This, the 19th issue of Transactions on Large-Scale Data- and Knowledge-Centered Systems, contains four high-quality papers investigating the areas of linked data and big data from a data management perspective. Two of the four papers focus on the application of clustering techniques in performing inference and search over (linked) data sources. One paper leverages graph analysis techniques to enable application-level integration of institutional data and a final paper describes an approach for protecting users' profile data from disclosure, tampering, and improper use.

Produktdetails

Mitarbeit Valeria de Antonellis (Herausgeber), Devis Bianchini (Herausgeber), Valeria De Antonellis (Herausgeber), Roberto De Virgilio (Herausgeber), Abdelkader Hameurlain (Herausgeber), Jose Küng (Herausgeber), Josef Küng (Herausgeber), Roland Wagner (Herausgeber), Roland Wagner et al (Herausgeber)
Verlag Springer, Berlin
 
Sprache Englisch
Produktform Taschenbuch
Erschienen 01.01.2015
 
EAN 9783662465615
ISBN 978-3-662-46561-5
Seiten 129
Abmessung 156 mm x 235 mm x 7 mm
Gewicht 225 g
Illustration IX, 129 p. 40 illus.
Serien Lecture Notes in Computer Science
Lecture Notes in Artificial Intelligence
Lecture Notes in Computer Science / Transactions on Large-Scale Data- and Knowledge-Centered Systems
Transactions on Large-Scale Data- and Knowledge-Centered Systems
Lecture Notes in Computer Science
Transactions on Large-Scale Data- and Knowledge-Centered Systems
Themen Naturwissenschaften, Medizin, Informatik, Technik > Informatik, EDV > Anwendungs-Software

B, Künstliche Intelligenz, Datenbanken, Artificial Intelligence, Wirtschaftsmathematik und -informatik, IT-Management, Netzwerk-Hardware, Data Warehousing, Informationsrückgewinnung, Information Retrieval, computer science, Information Retrieval, Database Management, Information Systems Applications (incl. Internet), Information Systems Applications (incl.Internet), Management of Computing and Information Systems, Computer and Information Systems Applications, IT Operations, database programming, Application software, Computer Communication Networks, Maintenance & repairs, information architecture, Management information systems, Internet searching, Information Storage and Retrieval, Databases, Computer communication systems, Network hardware

Kundenrezensionen

Zu diesem Artikel wurden noch keine Rezensionen verfasst. Schreibe die erste Bewertung und sei anderen Benutzern bei der Kaufentscheidung behilflich.

Schreibe eine Rezension

Top oder Flop? Schreibe deine eigene Rezension.

Für Mitteilungen an CeDe.ch kannst du das Kontaktformular benutzen.

Die mit * markierten Eingabefelder müssen zwingend ausgefüllt werden.

Mit dem Absenden dieses Formulars erklärst du dich mit unseren Datenschutzbestimmungen einverstanden.